NoFTL-KV: TacklingWrite-Amplification on KV-Stores with Native Storage Management

نویسندگان

  • Tobias Vinçon
  • Sergey Hardock
  • Christian Riegger
  • Julian Oppermann
  • Andreas Koch
  • Ilia Petrov
چکیده

Modern persistent Key/Value stores are designed to meet the demand for high transactional throughput and high data-ingestion rates. Still, they rely on backwards-compatible storage stack and abstractions to ease space management, foster seamless proliferation and system integration. Their dependence on the traditional I/O stack has negative impact on performance, causes unacceptably high write-amplification, and limits the storage longevity. In the present paper we present NoFTL-KV, an approach that results in a lean I/O stack, integrating physical storage management natively in the Key/Value store. NoFTL-KV eliminates backwards compatibility, allowing the Key/Value store to directly consume the characteristics of modern storage technologies. NoFTLKV is implemented under RocksDB. The performance evaluation under LinkBench shows that NoFTL-KV improves transactional throughput by 33%, while response times improve up to 2.3x. Furthermore, NoFTL-KV reduces write-amplification 19x and improves storage longevity by imately the same factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NVMKV: A Scalable and Lightweight Flash Aware Key-Value Store

State-of-the-art flash-optimized KV stores frequently rely upon a log structure and/or compaction-based strategy to optimally organize content on flash. However, these strategies lead to excessive I/O, beyond the write amplification generated within the flash itself, with both the application and the flash device constantly rearranging data. In this paper, we explore the other extreme in the de...

متن کامل

LSM-trie: An LSM-tree-based Ultra-Large Key-Value Store for Small Data Items

Key-value (KV) stores have become a backbone of largescale applications in today’s data centers. The data set of the store on a single server can grow to billions of KV items or many terabytes, while individual data items are often small (with their values as small as a couple of bytes). It is a daunting task to efficiently organize such an ultra-large KV store to support fast access. Current K...

متن کامل

LSM-trie: An LSM-tree-based Ultra-Large Key-Value Store for Small Data

Key-value (KV) stores have become a backbone of largescale applications in today’s data centers. The data set of the store on a single server can grow to billions of KV items or many terabytes, while individual data items are often small (with their values as small as a couple of bytes). It is a daunting task to efficiently organize such an ultra-large KV store to support fast access. Current K...

متن کامل

TRIAD: Creating Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores

We present TRIAD, a new persistent key-value (KV) store based on Log-Structured Merge (LSM) trees. TRIAD improves LSM KV throughput by reducing the write amplification arising in the maintenance of the LSM tree structure. Although occurring in the background, write amplification consumes significant CPU and I/O resources. By reducing write amplification, TRIAD allows these resources to be used ...

متن کامل

NVMKV: A Scalable, Lightweight, FTL-aware Key-Value Store

Key-value stores are ubiquitous in high performance data-intensive, scale out, and NoSQL environments. Many KV stores use flash devices for meeting their performance needs. However, by using flash as a simple block device, these KV stores are unable to fully leverage the powerful capabilities that exist within Flash Translation Layers (FTLs). NVMKV is a lightweight KV store that leverages nativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018